

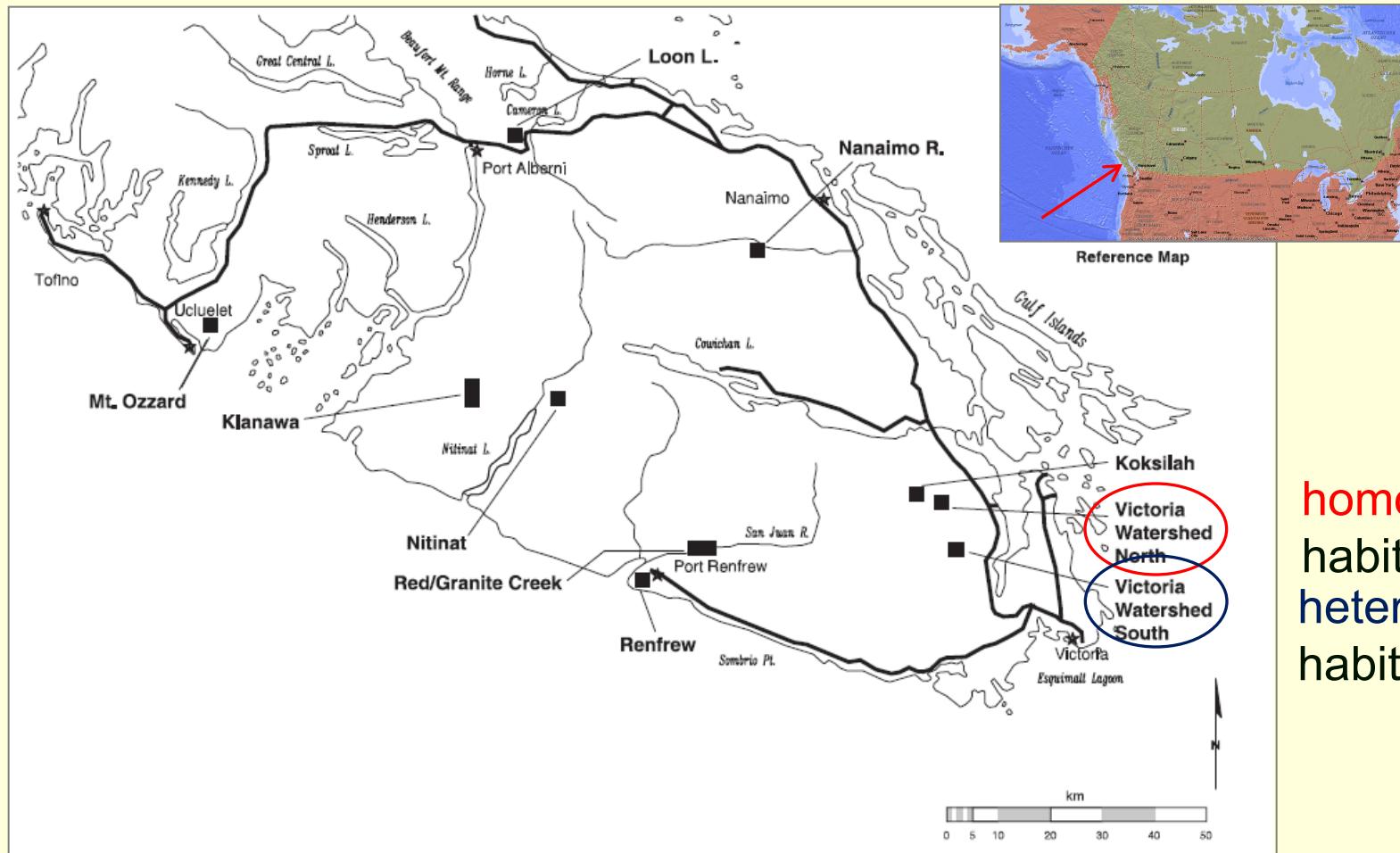
Spatial Statistics

Summer semester 2020

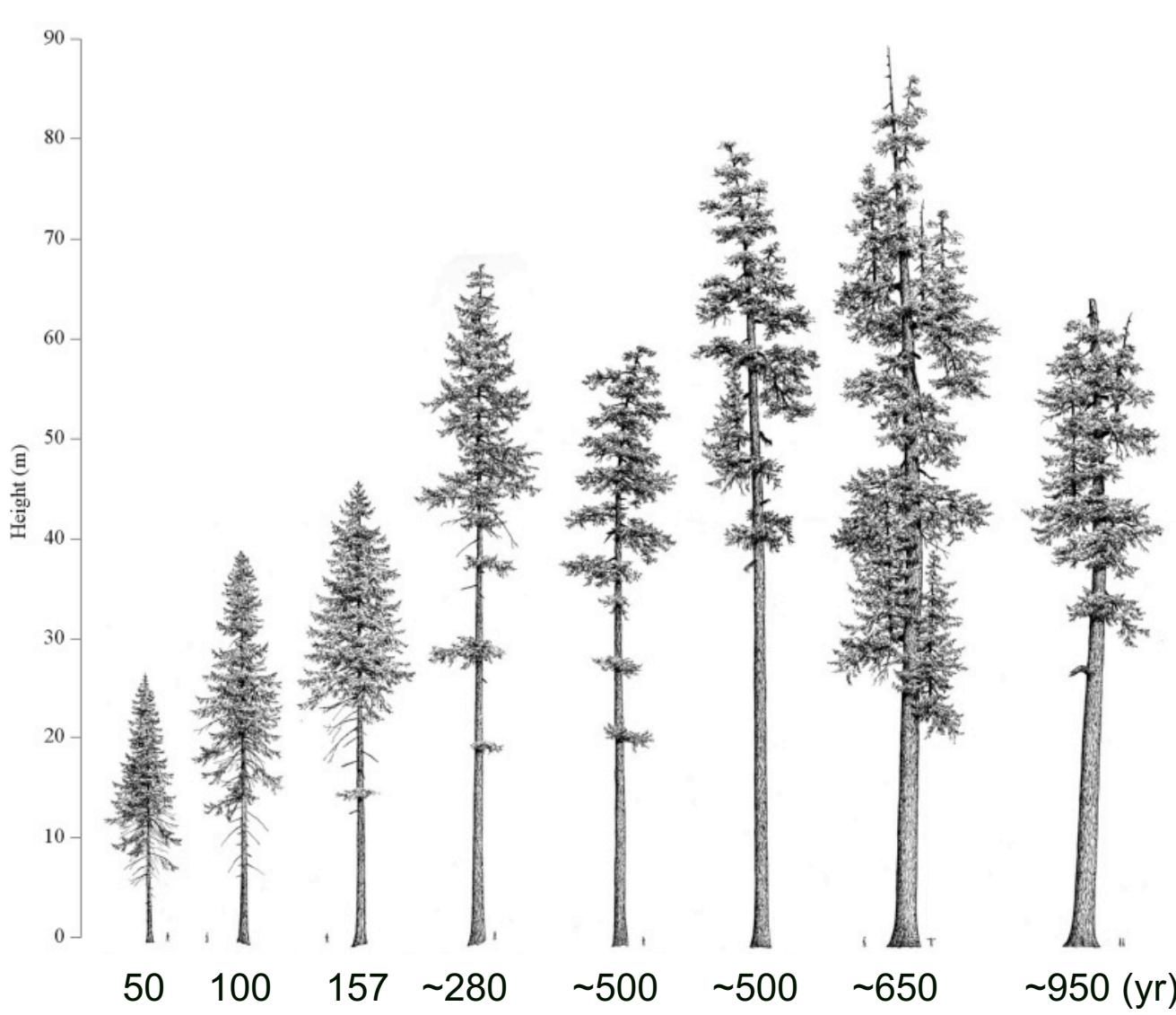
Practical 1st Order Characteristics

Kerstin Wiegand, Stephan Getzin, Maximilian Hesselbarth

Coastal temperate forest on south-eastern Vancouver Island

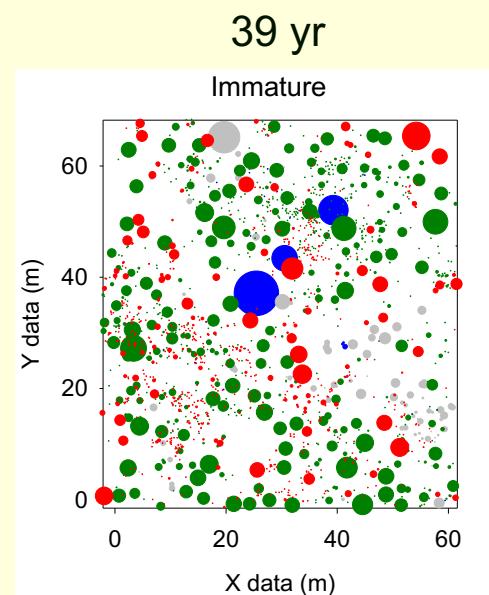
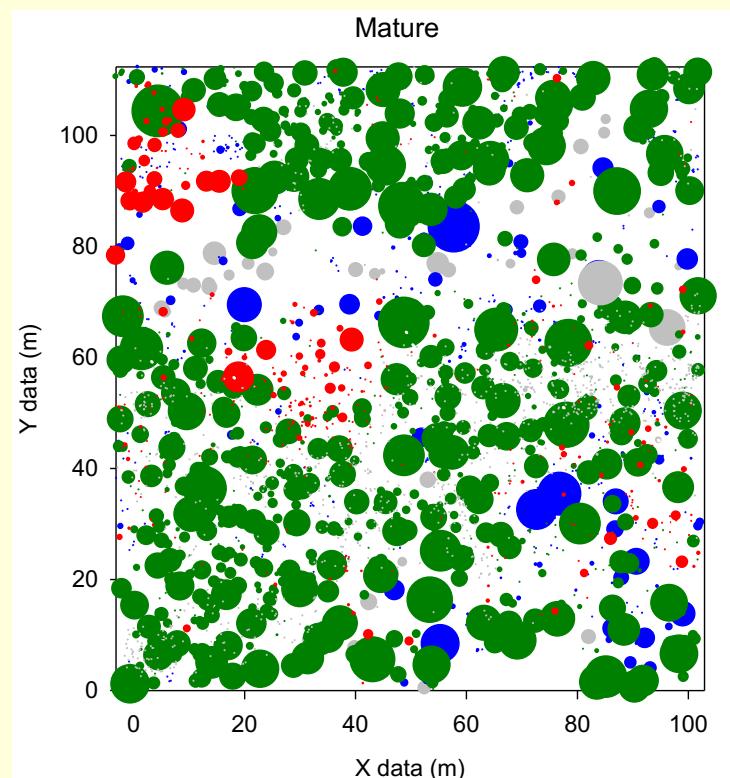
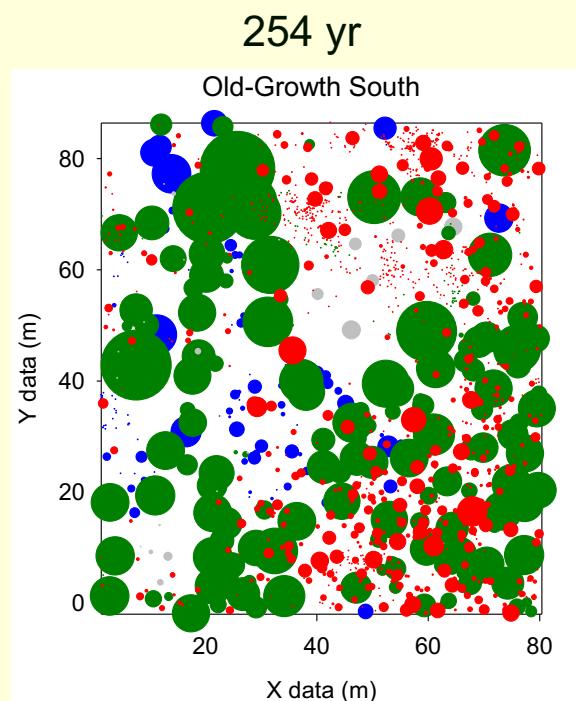


Aging pioneer Douglas-fir after stand replacing fire



Shade-tolerant,
late-successional
western hemlock
(left) and
western redcedar

Chronosequence



- Douglas-fir
- western hemlock
- western redcedar
- all others

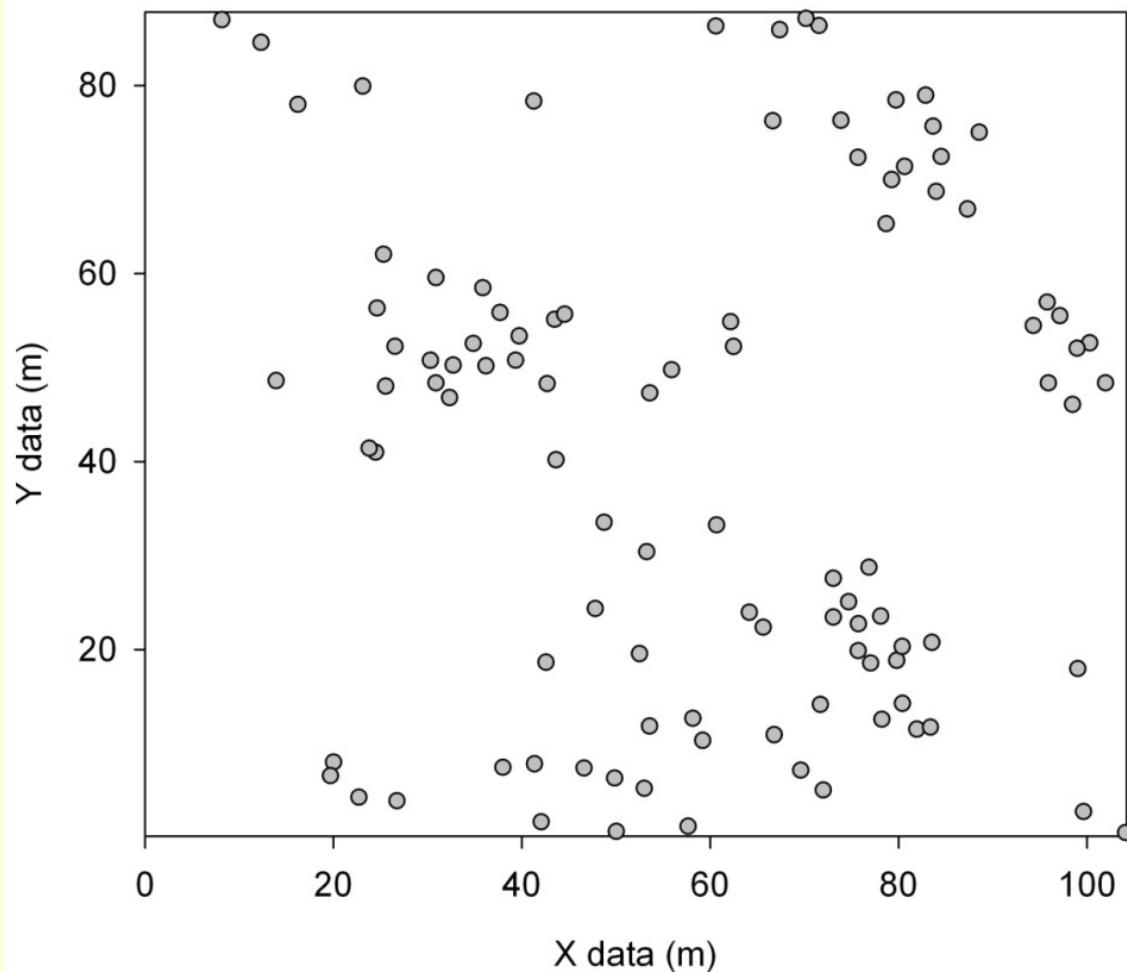
for all trees measured:

- x-y-coordinates, DBH
(diameter at breast height)
- height, status

bubble size
~ DBH

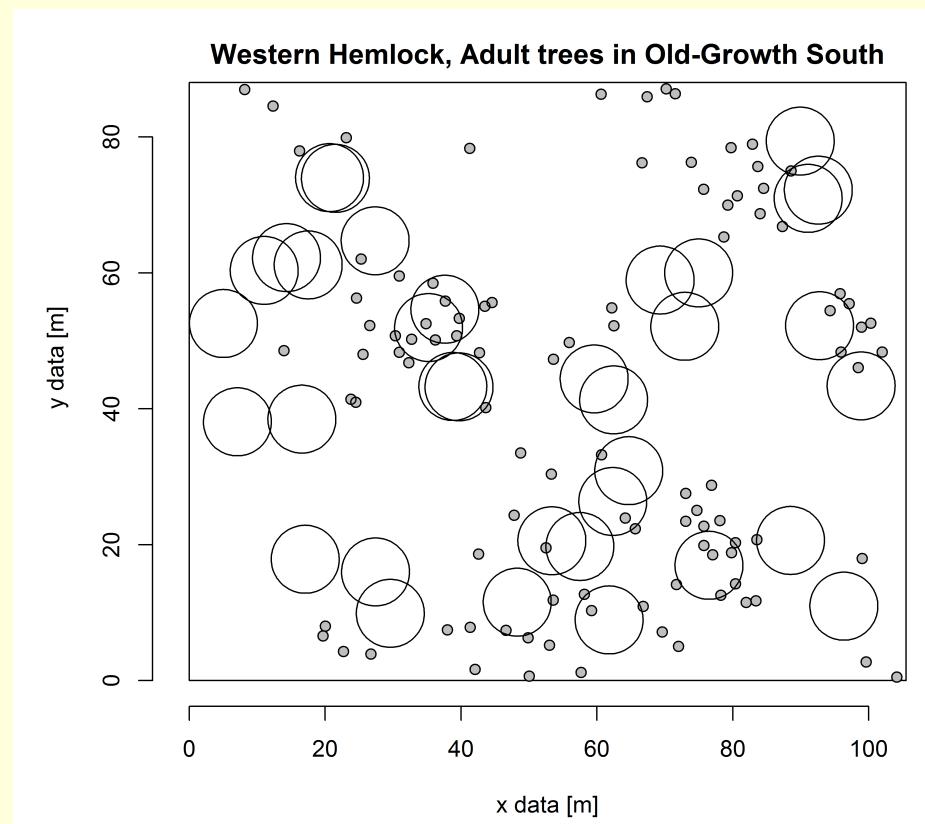
1st order properties – comparing theoretical Poisson distribution against empirical data

Western Hemlock, Adult trees in Old-Growth South



1st order properties – comparing theoretical Poisson distribution against empirical data

- ⇒ estimate intensity λ by randomly throwing coin (35×)
- ⇒ coin = “*moving window*“
(two groups: 1 Cent & 2 Euro)
- ⇒ λ = absolute number events in samples / number of samples
- ⇒ e.g.: 32 events in $m = 35$ samples of fixed size
 $\lambda = 0.914$ events/area



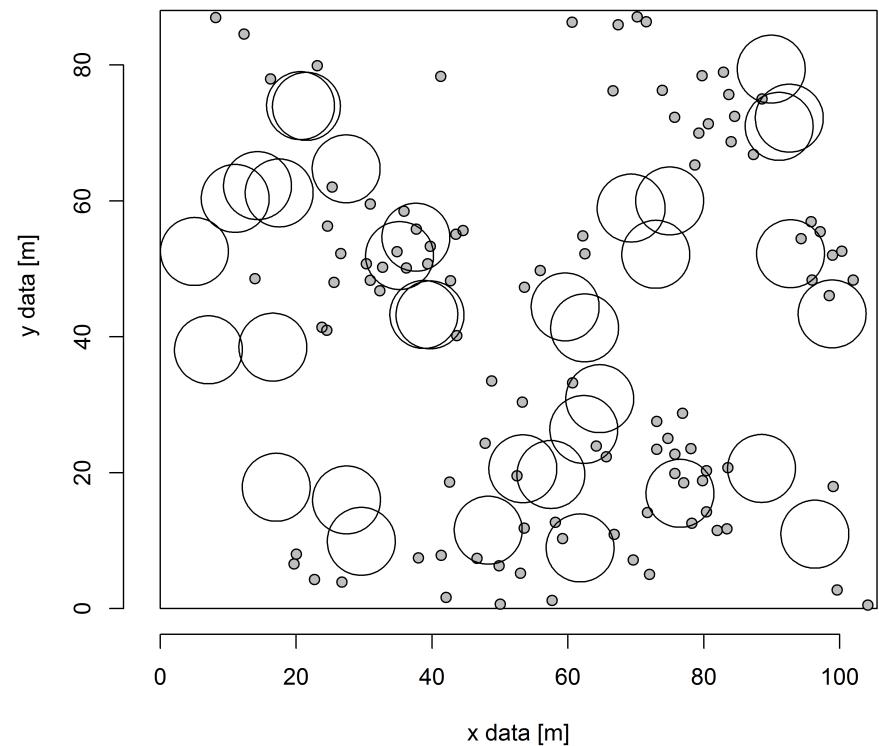
1st order properties – comparing theoretical Poisson distribution against empirical data

$$P_\lambda(n) = \frac{\lambda^n}{n!} e^{-\lambda}$$

⇒ $P_\lambda(n)$ = probability to find n trees within a circle (of area $B=1$ unit) for the estimated intensity λ

- ⇒ $P_{0.914}(0) = 0.401 = 40.1\%$
- ⇒ $P_{0.914}(1) = 0.366$
- ⇒ $P_{0.914}(2) = 0.168$
- ⇒ $P_{0.914}(3) = 0.051$
- ⇒ $P_{0.914}(4) = 0.012$
- ⇒ $P_{0.914}(5) = 0.002$
- ⇒ $P_{0.914}(6) = 0.000 = 0.03\%$

Western Hemlock, Adult trees in Old-Growth South

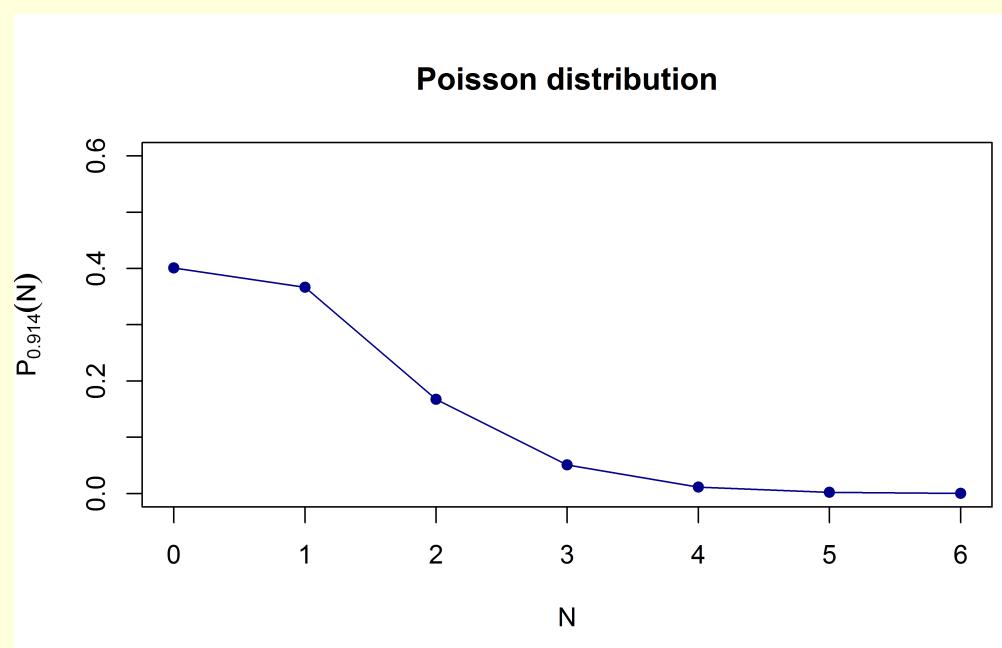


1st order properties – comparing theoretical Poisson distribution against empirical data

$$P_\lambda(n) = \frac{\lambda^n}{n!} e^{-\lambda}$$

⇒ $P_\lambda(n)$ = probability to find n trees within a circle (of area $B=1$ unit) for the estimated intensity λ

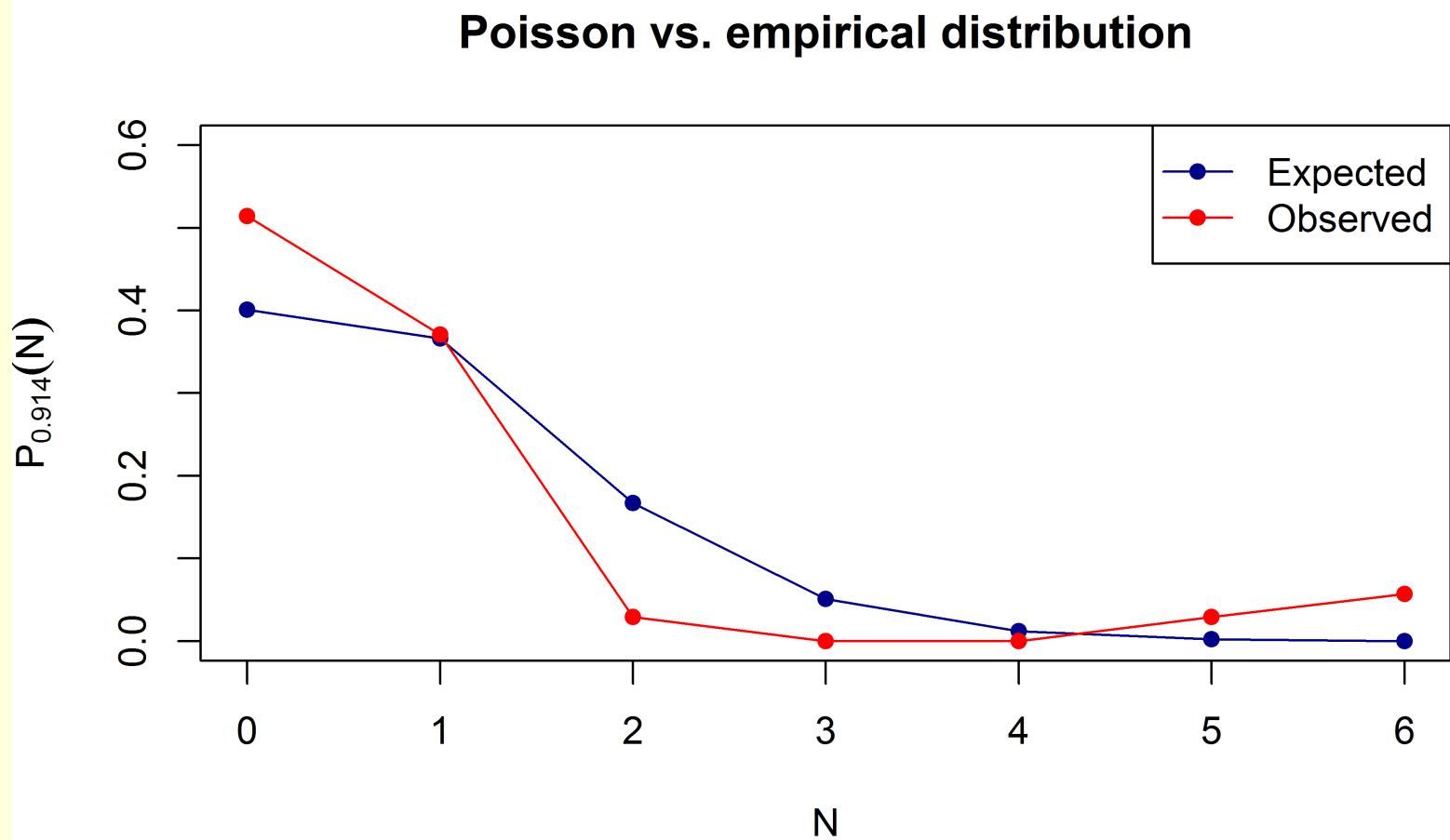
- ⇒ $P_{0.914}(0) = 0.401 = 40.1\%$
- ⇒ $P_{0.914}(1) = 0.366$
- ⇒ $P_{0.914}(2) = 0.168$
- ⇒ $P_{0.914}(3) = 0.051$
- ⇒ $P_{0.914}(4) = 0.012$
- ⇒ $P_{0.914}(5) = 0.002$
- ⇒ $P_{0.914}(6) = 0.000 = 0.03\%$



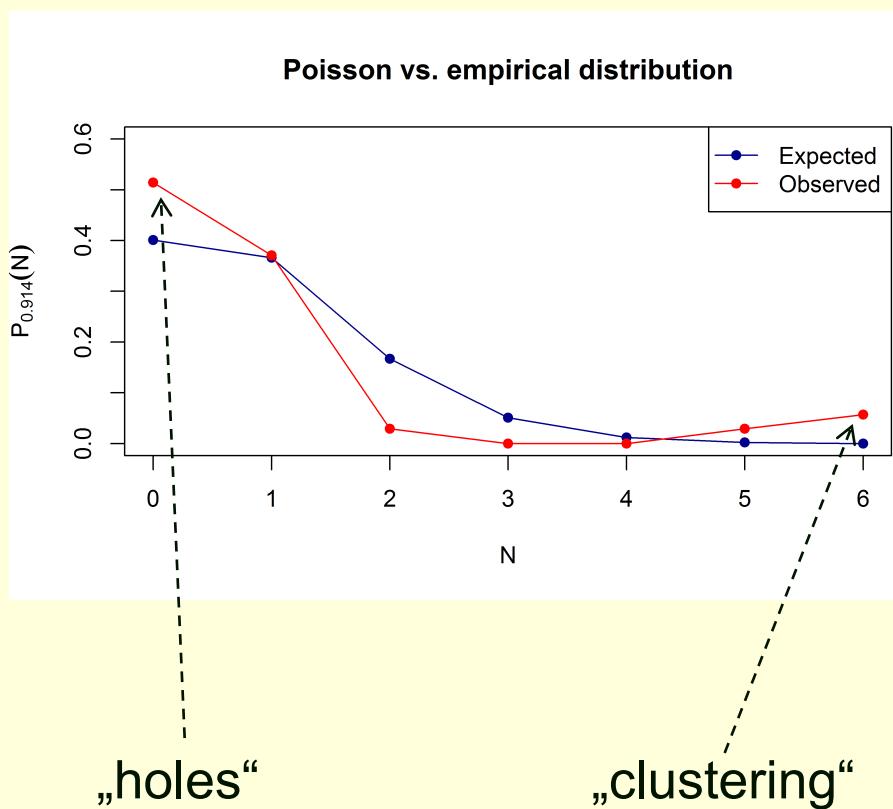
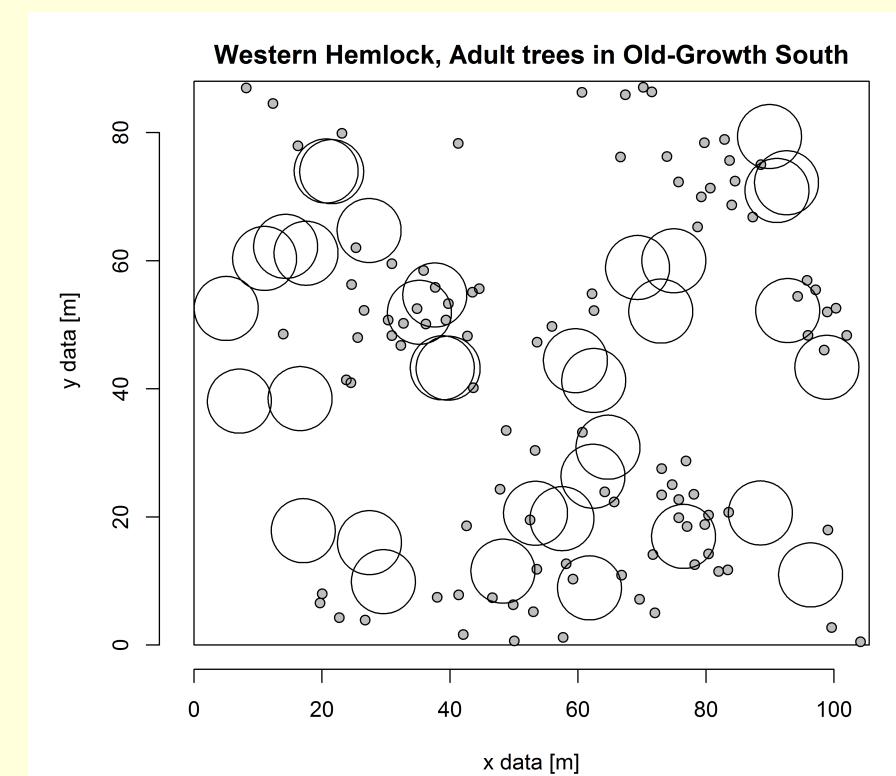
1st order properties – comparing theoretical Poisson distribution against empirical data

Number (n) of events in sample category	$P_\lambda(n)$	Expected number of discoveries in sample category $= 35 \times P_\lambda(n)$	Observed number of discoveries x in sample category	Observed fraction of discoveries in sample category
0	0.401	14.04	18	0.514
1	0.366	12.81	13	0.371
2	0.167	5.85	1	0.029
3	0.051	1.78	0	0.000
4	0.012	0.42	0	0.000
5	0.002	0.07	1	0.029
6	0.000	0.00	2	0.057

1st order properties – comparing theoretical Poisson distribution against empirical data



1st order properties – comparing theoretical Poisson distribution against empirical data



1st order properties – comparing theoretical Poisson distribution against empirical data

.....with chi-square test (because of small sample size)

H_0 : Western hemlock adult trees are randomly distributed.

H_1 : Western hemlock adult trees are not randomly distributed.

1st order properties – comparing theoretical Poisson distribution against empirical data

.....with chi-square test (because of small sample size)

H_0 : Western hemlock adult trees are randomly distributed.

H_1 : Western hemlock adult trees are not randomly distributed.

$$\chi^2 = \sum \frac{(O - E)^2}{E} \quad \begin{aligned} O &= \text{Observed value} \\ E &= \text{Expected value} \end{aligned}$$

1st order properties – comparing theoretical Poisson distribution against empirical data

Number (n) of events in sample category	Expected number of discoveries in sample category = $35 \times P_\lambda(n)$	Number of observed discoveries in sample category	chi-square $\frac{(O-E)^2}{E}$
0	14.04	18	1.117
1	12.81	13	0.003
2	5.85	1	
3	1.78	0	
4	0.42	0	
5	0.07	5	
6	0.00	1	
		2	
			$\sum = 3.210$

all expected values should be 3 or more

d.f. = $k-2 = 1$; critical value $\chi^2_{0.95,1d.f.} = 3.841 (> 3.210) \rightarrow \text{do not reject } H_0$

1st order properties – comparing theoretical Poisson distribution against empirical data

Number (n) of events in sample category	Expected number of discoveries in sample category = $35 \times P_\lambda(n)$	Number of observed discoveries in sample category	chi-square $\frac{(O-E)^2}{E}$
0	14.04	18	1.117
1	12.81	13	0.003
2	5.85	1	4.021
3	1.78	0	0.235
4	0.42	0	
5	0.07	1	
6	0.00	2	
$\sum = 5.376$			

all expected values should be 3 or more

$\lambda = 3.5$

d.f. = $k-2 = 2$; critical value $\chi^2_{0.95, 2d.f.} = 5.991 (> 5.376) \rightarrow \text{do not reject } H_0$

2nd order properties

Is the pattern is not CSR, but is it clustered or regular?

under CSR the variance $\sigma^2 = \bar{x}$ **Index of dispersion** $I = \frac{s^2}{\mu} = \frac{\frac{1}{m-1} \sum_{i=1}^m (x_i - \bar{x})^2}{\frac{1}{m} \sum_{i=1}^m x_i}$

2nd order properties

Is the pattern is not CSR, but is it clustered or regular?

under CSR the variance $\sigma^2 = \bar{x}$ Index of dispersion $I = \frac{s^2}{\mu} = \frac{\frac{1}{m-1} \sum_{i=1}^m (x_i - \bar{x})^2}{\frac{1}{m} \sum_{i=1}^m x_i}$

if $I > 1$, pattern is clustered

if $I < 1$, pattern is regular

I for Western hemlock adults = 2.726 -> **trees are clustered (n.s.)**
(at scale of moving window)